Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(10): 16076-16084, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38240972

RESUMO

The widespread use of copper-based pesticides, while effective in controlling plant diseases, has been identified as a major source of copper contamination in soils. This raises concerns about potential adverse effects on earthworms, key players in soil health and ecosystem function. To inform sustainable pesticide practices, this study aimed to establish copper toxicity thresholds for earthworm avoidance in agricultural soils impacted by copper-based pesticides. We collected 40 topsoil samples (0-5 cm) from orchards and vineyards in the O'Higgins Region of central Chile, and 10 additional soils under native vegetation as background references. A standardized avoidance bioassay using Eisenia fetida assessed the impact of copper-based pesticides on the soils. Total copper concentrations ranged between 23 and 566 mg kg-1, with observed toxic effects on earthworms in certain soils. The effective concentration at 50% (EC50) for total soil copper, determined by Eisenia fetida's avoidance response, was 240 mg kg-1, with a 95% confidence interval of 193-341 mg kg-1. We further compared our EC50 values with existing data from agricultural soils impacted by mining activities. Interestingly, the results revealed a remarkable similarity between the thresholds for earthworm avoidance, regardless of the source of copper contamination. This observation underscores the universality of copper toxicity in agricultural ecosystems and its potential impact on soil biota. This study provides novel insights into copper toxicity thresholds for earthworms in real-world, pesticide-contaminated soils.


Assuntos
Oligoquetos , Praguicidas , Animais , Praguicidas/toxicidade , Cobre/toxicidade , Ecossistema , Solo
3.
Environ Sci Pollut Res Int ; 29(20): 29258-29267, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34462861

RESUMO

Plastic has become the most widespread human-made material and small fragments (< 5mm, so called microplastics, MPs) accumulate in all the ecosystems. It is now admitted that the terrestrial environment represents an important sink for MPs and it has only recently become the focus of research, notably in ecotoxicology. In spite of a growing body of evidence regarding the potential effects of MPs on soil biota, more efforts are needed to address issues in this field. The aim of our study was to measure, at different levels of biological organization, the responses of Cantareus aspersus snail to low-density polyethylene (LDPE) particles dispersed in their food. Juvenile snails were exposed to a range of LDPE concentrations (10, 25, and 50% v/v) and sizes (median particle size (d50) of 120, 292, 340, and 560 µm). This study showed no snail feeding avoidance toward LDPE. The ingestion and digestion processes along the snail digestive tract did not lead to a measurable fragmentation of the MP particles. At the individual scale, big sized particles improved growth at the lowest exposure concentration tested, whereas at the molecular level, only small sized particles triggered oxidative stress but without causing quantifiable cyto- or genotoxic effects. The underlying mechanisms remain to be elucidated which strengthens the necessity to improve our knowledge on the effects of MPs on various biological models to better evaluate their environmental risks in terrestrial environments.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Ecossistema , Humanos , Microplásticos/toxicidade , Plásticos/toxicidade , Polietileno/toxicidade , Caramujos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...